- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ma, Yueling (2)
-
Melchior, Peter (2)
-
Bennett, Andrew (1)
-
Condon, Laura E. (1)
-
Condon, Laura_E (1)
-
De_la_Fuente, Luis (1)
-
Defnet, Amy (1)
-
Leonarduzzi, Elena (1)
-
Maxwell, Reed M. (1)
-
Maxwell, Reed_M (1)
-
Tran, Hoang (1)
-
Triplett, Amanda (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Water table depth (WTD) has a substantial impact on the connection between groundwater dynamics and land surface processes. Due to the scarcity of WTD observations, physically‐based groundwater models are growing in their ability to map WTD at large scales; however, they are still challenged to represent simulated WTD compared to well observations. In this study, we develop a purely data‐driven approach to estimating WTD at continental scale. We apply a random forest (RF) model to estimate WTD over most of the contiguous United States (CONUS) based on available WTD observations. The estimated WTD are in good agreement with well observations, with a Pearson correlation coefficient (r) of 0.96 (0.81 during testing), a Nash‐Sutcliffe efficiency (NSE) of 0.93 (0.65 during testing), and a root mean square error (RMSE) of 6.87 m (15.31 m during testing). The location of each grid cell is rated as the most important feature in estimating WTD over most of the CONUS, which might be a surrogate for spatial information. In addition, the uncertainty of the RF model is quantified using quantile regression forests. High uncertainties are generally associated with locations having a shallow WTD. Our study demonstrates that the RF model can produce reasonable WTD estimates over most of the CONUS, providing an alternative to physics‐based modeling for modeling large‐scale freshwater resources. Since the CONUS covers many different hydrologic regimes, the RF model trained for the CONUS may be transferrable to other regions with a similar hydrologic regime and limited observations.more » « less
-
Bennett, Andrew; Tran, Hoang; De_la_Fuente, Luis; Triplett, Amanda; Ma, Yueling; Melchior, Peter; Maxwell, Reed_M; Condon, Laura_E (, Journal of Advances in Modeling Earth Systems)Abstract Integrated hydrologic models can simulate coupled surface and subsurface processes but are computationally expensive to run at high resolutions over large domains. Here we develop a novel deep learning model to emulate subsurface flows simulated by the integrated ParFlow‐CLM model across the contiguous US. We compare convolutional neural networks like ResNet and UNet run autoregressively against our novel architecture called the Forced SpatioTemporal RNN (FSTR). The FSTR model incorporates separate encoding of initial conditions, static parameters, and meteorological forcings, which are fused in a recurrent loop to produce spatiotemporal predictions of groundwater. We evaluate the model architectures on their ability to reproduce 4D pressure heads, water table depths, and surface soil moisture over the contiguous US at 1 km resolution and daily time steps over the course of a full water year. The FSTR model shows superior performance to the baseline models, producing stable simulations that capture both seasonal and event‐scale dynamics across a wide array of hydroclimatic regimes. The emulators provide over 1,000× speedup compared to the original physical model, which will enable new capabilities like uncertainty quantification and data assimilation for integrated hydrologic modeling that were not previously possible. Our results demonstrate the promise of using specialized deep learning architectures like FSTR for emulating complex process‐based models without sacrificing fidelity.more » « less
An official website of the United States government
